Abstract
We performed a computer simulation for effects of an anticoagulant agent on thrombus formation under the influence of the blood flow, assuming a rat arteriovenous shunt in which a nylon filament was inserted. A blood model consisted of a normal blood and a thrombus, and they were expressed by an assembly of particles. A normal blood particle close to the nylon filament was changed to a thrombus particle when the shear rate was lower than a threshold value. An anticoagulant effect depending on a drug concentration inhibited changes from normal blood particles to thrombus ones. As a result of computer simulation, thrombus was formed with a thickness from 0.1 mm to 0.4 mm around the nylon filament. Thrombus weight decreased with an increasing dose, which was qualitatively consistent with an experimental result, while, thrombus weight in the simulation was approximately 15-20% of that in the experiment. It is necessary to improve the simulation model toward quantitative identification of an experimentally observed anticoagulant effect.