JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
Online ISSN : 1347-538X
Print ISSN : 1344-7653
ISSN-L : 1344-7653
PAPERS
Uncemented Total Hip Replacement Stem Loosening after Long Term Compressive Stress Application: A Simulated FEA Study of Cortical Bone Remodeling
Duk-Young JUNGSadami TSUTSUMIRyusuke NAKAIKen IKEUCHIRon SEKEL
Author information
JOURNAL FREE ACCESS

2004 Volume 47 Issue 4 Pages 1079-1085

Details
Abstract
The purpose of this study is to predict with the use of FEA, the differing predisposition to cortical bone resorption and subsequent distal migration of an un-cemented femoral hip replacement stem subjected to long term biomechanical high compressive stresses, while varying the load angles, the material properties of the stem, and the stem length. A two-dimensional hip model was constructed to estimate the minimum principle stresses (P3) and migration magnitudes. Bone remodeling at the interface between the bone and the prosthesis was performed by comparison of the local compressive stress to physiological stress values governing bone resorption. With respect to load angles, migrations of the hip prosthesis did not occur with load angles between 63° and 74° load angle in relation to the longitudinal axis of the bony femur, as the compressive stress generated on the cortical bone was under the criteria threshold for bone resorption (-50MPa). In addition, the magnitude of migration (17%decrease) was relatively more sensitive to changes in stem length than those (92%decrease) of changes of material properties. In conclusion, using an FEA model for bone remodeling, based on the high compressive stresses exerted on distal cortical bone, it is possible to estimate migration magnitudes of cementless hip prostheses in the long term. The load angles have been shown to be an important parameter affecting the migration magnitudes and furthermore, it can be demonstrated that the stiffer materials and reduction of stem length can decrease the migration of cementless hip prosthesis in the long term.
Content from these authors
© 2004 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top