JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
Online ISSN : 1347-538X
Print ISSN : 1344-7653
ISSN-L : 1344-7653
PAPERS
Numerical Analysis of Three-Dimensional Cervical Behaviors in Posterior-Oblique Car Collisions Using 3-D Human Whole Body Finite Element Model
Yu-Bong KANGDuk-Young JUNGMasatoshi TANAKANobuyuki YOSHINOSadami TSUTSUMIKen IKEUCHI
Author information
JOURNAL FREE ACCESS

2005 Volume 48 Issue 4 Pages 598-606

Details
Abstract

Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.

Content from these authors
© 2005 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top