JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
Online ISSN : 1347-538X
Print ISSN : 1344-7653
ISSN-L : 1344-7653
PAPERS
A Global Robust Optimization Using Kriging Based Approximation Model
Kwon-Hee LEEGyung-Jin PARK
Author information
JOURNAL FREE ACCESS

2006 Volume 49 Issue 3 Pages 779-788

Details
Abstract

The current trend of design methodologies is to make engineers objectify or automate the decision-making process. Numerical optimization is an example of such technologies but it may produce uncontrollable uncertainties. To increase manageability of such uncertainties, the Taguchi method, reliability-based optimization and robust optimization are commonly being used. The main functional requirement of a mechanical system is to obtain the target performance with maximum robustness. In this research, a design procedure for global robust optimization is developed using kriging and global optimization approaches. Robustness is determined by kriging model to reduce a number of real functional calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust optimum of a surrogate model. As the postprocess, the global optimum is further refined by applying the first-order second-moment approximation method. Mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

Content from these authors
© 2006 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top