JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry
Print ISSN : 0914-8825
Fluid-Elastic Vibration of Flexible Overflow Weir
Yuzuru EGUCHINobukazu TANAKA
Author information
JOURNAL FREE ACCESS

1990 Volume 33 Issue 3 Pages 323-329

Details
Abstract

The present paper describes the fundamental feature of the fluid-elastic vibration of flexible overflow weir, as observed in the French demonstration fast breeder reactor, Super Phenix-1. In the experimental study, the instability criterion of the fluid-elastic vibration was investigated using a simple experimental apparatus of a rectangular tank separated by a flexible weir. A spring-mass model for sloshing motion of liquid contained in the tank was developed to clarify the mechanism of the instability. The instability condition was analytically derived from the equations of the spring-mass model. The equations of the spring-mass model were also computationally integrated in time to simulate the timewise evolution of the fluid-elastic vibration. The comparison between the experimental and theoretical results indicate that the present theoretical model is capable of predicting the general characteristics of the vibration observed in the experiment. The present study revealed that the lag-time of the water fall at the weir is the most influential parameter on the fluid-elastic instability of a flexible overflow weir.

Content from these authors
© The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top