Abstract
To simulate the reactor system dynamic features during density wave oscillations (DWO), both the non-linear method and the linear method can be used. Although some transient information is lost through model linearization, the high computational efficiency and relatively accurate results make the linear analysis methodology attractive, especially for prediction of the onset of instability. In the linear stability analysis, the system models are simplified through linearization of the complex non-linear differential equations, and then, the linear differential equations are generally solved in the frequency domain through Laplace transformation. In this paper, a system response matrix method was introduced by directly solving the differential equations in the time domain. By using a system response matrix method, the complicated transfer function derivation, which must be done in the frequency domain method, can be avoided. Using the response matrix method, a model was developed and applied to the single channel or parallel channel type instability analyses of the typical proposed SCWR design. The sensitivity of the decay ratio (DR) to the axial mesh size was analyzed and it was found that the DR is not sensitive to mesh size once sufficient number of axial nodes is applied. To demonstrate the effects of the inlet orificing to the stability feature for the supercritical condition, the sensitivity of the stability to inlet orifice coefficient was conducted for hot channel. It is clearly shown that a higher inlet orifice coefficient will make the system more stable. The susceptibility of stability to operating parameters such as mass flow rate, power and system pressure was also performed. And the measure to improve the SCWR stability sensitivity to operating parameters was investigated. It was found that the SCWR stability sensitivity feature can be improved by carefully managing the inlet orifices and choosing proper operating parameters.