The Proceedings of the International Conference on Motion and Vibration Control
Online ISSN : 2424-2977
2020.15
Session ID : 10094
Conference information

Finite element investigation of using cartilage plate with varying thickness in cartilage myringoplasty
Zhiqiang WuKazuki KamitaniTakashi TanakaYasunori Oura
Author information
CONFERENCE PROCEEDINGS RESTRICTED ACCESS

Details
Abstract

This research aims to find a better design of cartilage plate used in myringoplasty, a surgical procedure to reconstruct the tympanic membrane (TM) of human middle ear when it is perforated. A detailed three-dimensional finite element model of human middle ear is created and used to investigate the effects of thickness variation of cartilage plate on sound transmission. The validity of the numerical model is verified by comparing the vibration response of the stapes footplate with that of the measurement results of other researchers under a sound pressure of 90 dB. Then, a reconstructed model is created by replacing an assumed perforation on the TM with a uniform thickness cartilage plate. Varying the thickness of cartilage plate from 0.1 mm to 0.7 mm, and evaluating the displacement of stapes footplate in a frequency range from 0.1 KHz to 10 KHz, frequency response analysis show that 0.3-0.5 mm models have the best performance than others. However, from the viewpoint of quality of life (QOL), there is still a large difference between the performance of reconstructed models and that of the heathy model. As a further investigation, instead of adopting a uniform thickness, the thickness of the cartilage plate is designed into several patterns by combination of thinner layers and thicker layers. The frequency response curves of some patterned models show better matching to the curve of healthy model than using uniform thickness plate. From these results, a further improvement can be expected by optimizing the pattern design.

Content from these authors
© 2020 The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top