Abstract
In this research, we investigate both analytically and experimentally the electrical properties of carbon nanotube (CNT)-based polymer composites. An analytical model was developed to predict the electrical conductivity of CNT-based composites. The micro/nanoscale structures of the nanocomposites and the electrical tunneling effect due to the matrix material between CNTs were incorporated within the model. Electrical conductivity measurements were also performed on CNT/polycarbonate composites to identify the dependence of their electrical transport characteristics on the nanotube content. The analytical predictions were compared with the experimental data, and a good correlation was obtained between the predicted and measured results.