The Proceedings of Mechanical Engineering Congress, Japan
Online ISSN : 2424-2667
ISSN-L : 2424-2667
2019
Session ID : J04417P
Conference information

Development of Innovative CNT/Extra Super Duralumin composite materials
*Chihiro FUJIWARAShunta NIWAAkihito MATSUMURO
Author information
CONFERENCE PROCEEDINGS RESTRICTED ACCESS

Details
Abstract

Current science and technology should serve as it overcoming the issues of global environment and realization of the new industrial revolution immediately. To solve these important problems, drastic challenge from every field is accomplished. We focus on materials development with innovative characteristics in this study. In late years technology development about the space utilization become much active. Importance of the aerospace apparatus will increase more and more. Due to contribute to current technological development, we should design creatively an innovative high specific strength material. As our research objective, we came up with the idea of the development of an Extra Super Duralumin (ESD) based composite material with Carbon Nanotube (CNT), which has been well known as unprecedented excellent characteristics. ESD is an aluminum base alloy with high tensile strength and pressure resistance. In this study, pellet-plate type specimens consisted of our CNT/ESD composite materials were fabricated using compression sintering method with commercial single wall carbon nanotube and ESD powder of dozens of micrometers of particle size powder. The heat-treatment after sintering specimen was done under the conventional method. The obtained main optimum conditions as follows: CNT composite ratio of 1wt. %, ultrasonic dispersion time of 4 h and sintered temperature of 723 K for 4 h. It has already been demonstrated that Vickers hardness of CNT/ESD composite showed about 6 % increase in comparison with sintered ESD bulk material, and the density decreased down to 1.5 %. So, the specific strength improved up to 10 % just as expected. This result shows clearly possibility to develop a product with innovative characteristic by the effect of composition with nano-carbon materials.

Content from these authors
© 2019 The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top