The Proceedings of the Symposium on the Motion and Vibration Control
Online ISSN : 2424-3000
2010
Session ID : 1A25
Conference information
1A25 PI semiactive control using MR dampers
N. AGUIRREF. IKHOUANEJ. RODELLAR
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract
Magnetorheological (MR) dampers are a promising alternative structural active actuators as they provide adjustable damping over a wide range of frequencies without large power requirements. However, the complex dynamics that characterizes these devices makes it difficult to formulate control laws based on the MR damper model. Instead, many semiactive control strategies proposed in the literature have been based on the idea of "clipping" the voltage signal so that the MR damper force "tracks" a desired active control force which is computed on-line. With this idea many algorithms have been proposed using, among others, techniques such as optimal control, H_∞, control, sliding mode control, backstepping and QFT. This work presents a semiactive control strategy based on the same idea of "clipping" the voltage signal but using a simpler PI design. The proportional and integral gains of the controller are calculated so that the controller guarantees stability, minimization of the closed loop response and robustness against modeling errors. Effectiveness of the control strategy is compared to some others techniques and passive cases as well. Simulation results shows that this simple strategy can effectively improve the structural responses and achieve performance index comparable to that of more complex algorithms.
Content from these authors
© 2010 The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top