Host: The Japan Society of Mechanical Engineers
Name : [in Japanese]
Date : December 09, 2021 - December 10, 2021
This study discusses autonomous mobile robot (AMR) navigation with a manual operation system to carry equipment and product parts in manufacturing factories of the aircraft industry. Fully autonomous navigation for the AMRs has not still been achieved due to large number of parts and types, and complicated passages. In our operation strategy, when the AMRs cannot perform autonomous navigation, the AMRs have to be manually controlled by operators. Immediate stops of the AMRs have to be avoided to ensure efficacy of the transportation during the switching of the autonomous and manual navigation. An operation device which can be controlled from all the directions around the AMR is required. We focus on that the body of the AMR sways and utilize the sway to control the AMR. Additionally, we implement a power assist function according to longitudinal velocity-based impedance control based on the sway. In the power assist system, we design a dynamic observer based on a mathematical model of the AMR to estimate the hand force from the operator. Experimental analysis of the AMR shows the efficacy of the proposed power-assist control scheme.