Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
On the Distinction between Instrumented Indentation Technique and X-ray Diffraction Method in Nondestructive or Semi-Nondestructive Surface Stress Measurement
Shigetaka OKANODaisuke KANAMARURyohei IHARAMasahito MOCHIZUKI
Author information
JOURNAL FREE ACCESS

2016 Volume 65 Issue 4 Pages 319-324

Details
Abstract
In this study, the effect of machined surface layer on stress measurement by means of instrumented indentation technique and X-ray diffraction method was comparatively investigated through the use of three weld specimens of low-carbon austenitic stainless steel with different machined surface layers; as-cutout, mechanically-polished and electrolytically-polished specimens. Tensile and compressive stresses exist respectively in the machined surface layer of as-cutout and mechanically-polished specimens. Meanwhile, no stress and no machined surface layer exist in electrolytically-polished specimen. Tungsten Inert Gas (TIG) bead-on-plate welding was performed under the same welding heat input condition to introduce the residual stress into these three specimens. Against these three specimens, firstly the X-ray diffraction method was applied, then the instrumented indentation technique was applied and finally the stress relief technique was applied to measure the distributions of residual stress after welding. Based on a comparison between these stress measurement results, the instrumented indentation technique was in good agreement with the stress relief technique rather than the X-ray diffraction method, even though both machined surface layer and penetration of indenter had almost the same depths. That is why it can be considered that the instrumented indentation technique measures the residual stress in deeper areas of material surface than penetration depth of indenter. A distinction between the instrumented indentation technique and X-ray diffraction method in surface stress measurement was thus clarified from a viewpoint of measurement depth.
Content from these authors
© 2016 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top