Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
Basic Study on Evaluation of Spatially Distributed Soil Property with Sparse Modeling
Ikumasa YOSHIDAYosuke TASAKI
Author information
JOURNAL FREE ACCESS

2018 Volume 67 Issue 2 Pages 184-189

Details
Abstract

Kriging, which uses theory of conditional Gaussian random field, has been widely used in geotechnical problems. Least square method and L2 norm plays an important role in the method. The concept of sparse modeling attracts much attention from various fields. It is reported that it is successfully applied to many problems in various fields such as signal processing, image processing, machine learning and so on. The representative formulation LASSO uses L1 norm instead of L2 norm in the formulation. After illustrating the concept and formulation of sparse modeling, application to evaluation of soil property from limited number of boring data is discussed. One dimensional and two dimensional cases are indicated with assumption of sparsity in first-order and second-order differentiation space. In one dimensional case, both assumptions, which are sparsity in first-order and second-order differentiation, give reasonable distribution. In two-dimensional case, however, the assumption of sparsity in first-order differentiation gives unnatural distribution in the numerical examples. In the evaluation of spatial distribution of geotechnical problems, assumption of sparsity in second-order differentiation space seems reasonable.

Content from these authors
© 2018 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top