Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
Mechanism of Plastic Deformation in a Magnesium Nanotwinned Structure by Molecular Dynamics Simulations
Dai OKUMURAMasanari OTSUKAYoji SHIBUTANI
Author information
JOURNAL FREE ACCESS

2018 Volume 67 Issue 2 Pages 215-221

Details
Abstract

In this study, we perform molecular dynamics simulations to investigate plastic deformation modes of a magnesium (Mg) nanotwinned structure. Periodic units including (1011) twin boundaries (TBs) are analyzed using an embedded atom method potential. Equal spaces between the TBs are assumed at the initial state and the space is parametrized in the range between about 5 nm and 30 nm. It is found that plastic deformation is triggered by the slip along a (1011) twinning plane near a TB, and that this event induces two different deformation modes depending on the space, i.e., the migration of the TBs and the evolution of double twinning, which leads to void nucleation and polycrystallization. The plastic deformation provided by the two different modes is quantitatively verified from geometric analysis. As the space decreases, the migration of the TBs is superior to the evolution of double twinning.

Content from these authors
© 2018 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top