Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
Evolutions of Nonlinear Acoustics and Microstructure Induced by Plastic Strain in a Low Carbon Steel
Toshihiro OHTANIYutaka ISHIIMasayuki KAMAYATakayuki SAKAKIBARA
Author information
JOURNAL FREE ACCESS

2019 Volume 68 Issue 2 Pages 121-128

Details
Abstract

Electromagnetic acoustic resonance (EMAR) is a contactless resonant method with an electromagnetic acoustic transducer (EMAT). This method enables not only to measure exact ultrasonic attenuation of measured sample but also to eliminate nonlinear acoustic effect between the sample and transducer. In this study, the EMAR was applied to investigate the relationships between nonlinear acoustic characterizations; resonant frequency shift, three-wave mixing and birefringence acoustoelasticity and microstructural changes induced by tensile plastic strain in a low-carbon steel, JIS-S25C. Furthermore, we developed a single bulk-shear-wave EMAT which was composed of three-layer elongated coils and a pair of permanent magnets to measure in three-wave mixing. The EMAT transmits and receives shear wave propagating in thickness direction of a plate specimen. Three nonlinear acoustic parameters and ultrasonic attenuation increased with increase in tensile plastic strain. This phenomenon is interpreted as resulting from microstructure changes, especially, dislocation density and crystal misorientation. This is supported by X-ray observations for dislocation density and EBSD (electron backscattering diffraction) for the misorientation.

Content from these authors
© 2019 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top