Journal of the Society of Materials Science, Japan
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
Original Papers
Molecular Dynamics Analysis on Silica Interface Modeled in Surface Grinding Process for Non-Firing Solidification
Tomohiro SATOAtsuto KUBOTAKen-ichi SAITOHMasayoshi FUJIChika TAKAIHadi SENAMasanori TAKUMAYoshimasa TAKAHASHI
Author information
JOURNAL FREE ACCESS

2022 Volume 71 Issue 2 Pages 167-174

Details
Abstract

The industrial manufacturing methods for ceramics are powder mixing, molding, and firing. Ceramics are fired at a higher temperature than metal sintering. For this reason, in the ceramics manufacturing process, a large amount of energy is consumed, and a large amount of carbon dioxide is also emitted, especially in the firing process. Therefore, attention is focused on the non-firing solidification process of ceramics. In this method, after the molding process, there is a solidification process using a solvent instead of firing. In order to realize this solidification process, a grinding process is required to increase the activation energy of the surface of the raw ceramics particle. Therefore, in this study, we set up a molecular dynamics model that simulated grinding and calculated the activation of the silica surface. The grinding of the material surface was modified by the cylindrical indenter of LAMMPS, the material surface was constantly activated by passing multiple indenters continuously instead of a single indenter. As a result, a clear increase in energy was observed. It was suggested that continuous energy input is more effective than local energy input to the surface when reproducing surface activity. Furthermore, activation of the internal structure was observed as in the experiment. Adding water molecules in the relaxation calculation on the activated surface, binding through and without water molecules was observed. It was clarified that there are hydrogen bonds and siloxane bonds in this bond.

Content from these authors
© 2022 by The Society of Materials Science, Japan
Previous article Next article
feedback
Top