Abstract
This work presents theoretical and numerical investigation on crack identification using piezoelectric materials embedded in structures. At first, a crack estimation model was designed by using piezoelectric materials. A simplified analysis was employed by separating the solving procedure for this model to two steps: fracture mechanics analysis and piezoelectric analysis. Two hypotheses named as the MLTNM hypothesis and the constant strain hypothesis were adopted. By means of these two analysis steps, the effect of the crack on the potential distribution can be obtained. Then taking use of a finite element program, comparisons between theoretical and numerical results were examined. The theory was also used to find the relationship between the crack parameters and the potential distribution. Numerical simulations of crack identification were made. The applicability of the use of piezoelectric materials to crack identification was demonstrated.