Abstract
The effect of shot peening (SP) on stress corrosion cracking (SCC) prevention was evaluated from the viewpoints of crack initiation and propagation. It was found that the residual stress in a Type-304 stainless-steel specimen is changed-from tensile of 300MPa to compressive of -800MPa-by shot peening, and the effective SP depth is 0.35mm. It was also found that the crack initiation and propagation were prevented by shot peening. The mechanism by which the shot peening prevents these phenomena is explained according to the theory of superposition and loading history. That is, the prevention of crack initiation and propagation results from the fact that the compressive residual stress caused by SP decreases the applied load on the crack surface and prevents rupturing of the oxide film on the surface. Moreover, the effects of SCC prevention were shown to be valid when cyclic loading is applied after peening.