Abstract
Water quality in the Tokyo Bay is controlled by the load input from rivers, seawater currents, temperature variation, photosynthetic processes and others. On the other hand, 23.5 GJ/s of heat, as of 1995, is discharged into the Bay as cooling water effluent from thermal power plants along the coast. Low temperature water of bottom layers is pumped up and utilized as cooling water in thermal power plants. Although the intake and discharge of cooling water may influence water quality of coastal and inner bay areas where power plants are sited, few quantitative evaluations of the effects of cooling water on the water quality have been made yet.
In the present study, we report a result of computations to predict the effects of cooling water discharge on the water quality of the Tokyo Bay in the summer, based on a "primary ecological model" for two thermal conditions: the current heat discharge of 23.5 GJ/s, and a heat discharge of 28.9 GJ/s which is expected in the future. Flow and water temperature distribution data, computed by Kitahara et al.(2003), were used to run the model. It was concluded that except in the vicinities of outlet points, water quality of the Tokyo Bay in the summer might be little changed by the future increase of 5.4 GJ/s of heat discharge.