Journal of Japan Society for Fuzzy Theory and Intelligent Informatics
Online ISSN : 1881-7203
Print ISSN : 1347-7986
ISSN-L : 1347-7986
Original Papers
Study on the Effectiveness of Queen Ant Strategy for Binary Ant Colony Optimization
Takayuki IKEMIZUSatoshi ONORyota MORISHIGEShigeru NAKAYAMAIchiro IIMURA
Author information
JOURNAL FREE ACCESS

2010 Volume 22 Issue 6 Pages 804-817

Details
Abstract
Ant Colony Optimization (ACO) is one of promising meta-heuristics for graph search such as shortest path planning and traveling salesman problems. In recent years, some attempts have shown that ACO algorithms are applicable to 0-1 Integer Programming Problems (0-1IP). ACO algorithms for 0-1IP are called Binary ACO (BACO) algorithms. Although it is predictable that balance between search exploitation and exploration is important in ACO for 0-1IP, no previous work has proposed an algorithm which adjusts the balance. This paper proposes a method which is designed by applying Queen Ant Strategy (ASqueen) to BACO algorithms. The proposed method has a prospect for finding well-qualified solutions due to its subpopulation structure and the search area adjustment by a queen ant. Experimental results in 0-1 Knapsack problems have shown that the search performance of the proposed BASqueen shows better than that of other BACO algorithms, Simulated Annealing and Discrete Particle Swarm Optimization.
Content from these authors
© 2010 Japan Society for Fuzzy Theory and Intelligent Informatics
Previous article Next article
feedback
Top