Abstract
Circadian kaiBC expression in the Synechococcus elongatus PCC 7942, is generated by temporal information transmission from the KaiABC-based circadian oscillator to RpaA, a putative transcriptional factor, via the SasA-dependent positive pathway and the LabA-dependent negative pathway which is responsible for feedback regulation of KaiC. However, the labA/sasA double mutant has a circadian kaiBC expression rhythm, suggesting that there is an additional circadian output pathway. Here we describe a third output pathway, which is CikA-dependent. The cikA mutation attenuates KaiC overexpression-induced kaiBC repression and exacerbates the low-amplitude phenotype of the labA mutant, suggesting that cikA acts as a negative regulator of kaiBC expression independent of the LabA-dependent pathway. We propose a model in which temporal information from the KaiABC-based circadian oscillator is transmitted to gene expression through three separate output pathways.