Journal of the Japan society of photogrammetry and remote sensing
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
Original Papers
Crop Classification by Machine Learning Algorithm Combined X-band and C-band SAR Data
Yuki YAMAYARei SONOBENobuyuki KOBAYASHIKan-ichiro MOCHIZUKIXiufeng WANGHiroshi TANI
Author information
JOURNAL FREE ACCESS

2020 Volume 59 Issue 6 Pages 259-274

Details
Abstract

This paper presents a crop classification method using synthetic aperture radar (SAR) satellite data for mapping, in place of existing ground surveys. We used TerraSAR-X X-band dual-polarization data and RADARSAT-2 C-band full-polarization data. Values of the sigma-naught and polarimetric parameters were calculated from each type of data. We assessed the accuracy of classification performed by the random forests machine-learning algorithm. Three results were obtained. First, the classification accuracy was evaluated using RADARSAT-2 data for five scenes. Using nine variables calculated from each scene of RADARSAT-2 data, the overall accuracy exceeded 0.92. Second, the classification accuracy was evaluated using both RADARSAT-2 and TerraSAR-X data for five scenes. Using nine types of variables in the RADARSAT-2 data and four types of variables in the TerraSAR-X data, a significantly higher overall accuracy (over 0.93) was obtained than using only RADARSAT-2 data. This demonstrates the advantage of using SAR data for the two types of bands. Finally, for economic efficiency, the number of SAR scenes used for classification was reduced. The classification accuracy using only three scenes of RADARSAT-2 and TerraSAR-X data was not significantly different from that using five scenes. This shows that classification is efficient without requiring a large quantity of data.

Content from these authors
© 2020 Japan Society of Photogrammetry and Remote Sensing
Previous article
feedback
Top