Journal of Thermal Science and Technology
Online ISSN : 1880-5566
ISSN-L : 1880-5566
Papers
Transient Performance Behavior of Proton Exchange Membrane Fuel Cell by Configuration of Membrane and Gas Diffusion Layer
Sang Soon HWANGSang Seok HANPil Hyong LEEBong Il PARK
Author information
JOURNAL FREE ACCESS

2010 Volume 5 Issue 1 Pages 165-177

Details
Abstract

A single-phase, fully three-dimensional transient numerical simulation was performed to analyze the dynamic response of a proton exchange membrane fuel cell (PEMFC) with single serpentine flow channels. . In addition, the effects of the membrane and gas diffusion layer thickness on current density transient behavior were investigated using numerical simulation. An overshoot of current density is observed for all thicknesses of the membrane and gas diffusion layer at an abrupt change of operating voltage from 0.7 V to 0.5 V. The peak of the overshoot and the elapsed thickness time to reach to the steady state value increase with decreasing membrane thickness. It is thought that the thin membrane facilitates the transport of water and ions through the membrane, resulting in an increase in current density and humidification of the membrane. The elapsed time to reach steady state voltage become shorter and the peak of the overshoot decreases as the thickness of the gas diffusion layer decreases. We suggest that this occurs because a thick gas diffusion layer increases the distance between the current collector (as heat exchanger) and catalyst layer (as heat source), resulting in a low transport rate of heat generated by the electrochemical reaction at the catalyst layer.

Content from these authors
© 2010 by The Japan Society of Mechanical Engineers and The Heat Transfer Society of Japan
Previous article Next article
feedback
Top