Journal of Water and Environment Technology
Online ISSN : 1348-2165
ISSN-L : 1348-2165
2nd Asia Conference on UV technologies for Environmental Applications '04
Study on the Photolytic Mechanisms of Red 141 Dye Wastewaters with an 185nm Vacuum-UV lamp
Yung-Shuen Shen
Author information
JOURNAL FREE ACCESS

2005 Volume 3 Issue 1 Pages 19-27

Details
Abstract

The decomposition of Reactive Red 141 dye wastewaters by photolysis and VUV/H2O2 process with a 185nm Vacuum-UV lamp in a batch photoreactor was studied under various initial concentrations of organics, solution pH values, dosages of H2O2, and purging gases (N2, O2, and air). The photolytic properties of Red 141 were found to be highly dependent on the solution pH. For the VUV/H2O2 system, the individual contribution to the decomposition of Red 141 by direct photolysis, and free hydroxyl radicals destruction generated from the excitement of O2, H2O, and H2O2 by an 185nm VUV lamp, respectively was differentiated by the proposed assumption. Experimental results for the VUV-only system revealed that photolytic rates of organics by purging O2 were apparently larger than those by purging N2 and the removal of Red 141 was found to be above 90%. For the VUV/H2O2 process, the reaction rates were significantly raised compared with those by direct photolysis. The individual contribution on the decomposition of Red 141 by OH. destruction generated from the excitement of H2O2 molecules was found to be higher than 50% at low pH range (pH=3) in VUV/H2O2 system, however, only 30% at high pH range (pH=11) probably because of the production of hydroxyl radicals from the H2O2 excitement was hampered by the alkaline catalytic reaction between the molecules of H2O2 and HO2-.

Content from these authors
© 2005 Japan Society on Water Environment
Previous article Next article
feedback
Top