Abstract
Effect of the typhoon passage on the western boundary region of a two-layer ocean with bottom topography is studied. The ocean is initially at rest and is set in motion by a typhoon passing parallel to the west coast. Equations that represent barotropic and baroclinic modes of motions are solved numerically by means of the method of finite differences. Motions of the barotropic mode are assumed to be horizontally non-divergent. In this mode, an elongated vortex is produced by the typhoon and propagates toward the south after passage of the typhoon. Behavior of the vortex may be interpreted as continental shelf waves. It is found that the formation and propagation of continental shelf waves are hardly affected by the density stratification. As for the baroclinic response, the typhoon causes considerable interface displacements along its track. The interface displacements are associated with geostrophic motions and remain for long time, though they are formed on the continental slope. Besides the large scale baroclinic response, internal Kelvin waves are induced along the artificial east wall.