TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series C
Online ISSN : 1884-8354
ISSN-L : 1884-8354
Regular Paper
Vibration Testing Based on Impulse Response Excited by Laser Ablation (Input Sensorless FRF Measurements)
Naoki HOSOYAItsuro KAJIWARATakahiko HOSOKAWA
Author information
JOURNAL FREE ACCESS

2011 Volume 77 Issue 773 Pages 102-113

Details
Abstract
The authors have proposed an analyzing method for vibration testing based on impulse excitation by laser ablation in order to experimentally identify dynamic characteristics of micro devices such as HDD head actuators or MEMS that have in the high frequency region the natural frequencies of a few tens of kilohertz. This paper proposes a method that makes it possible to analyze FRF by only measuring the output (acceleration response) in a laser excitation experiment. This enables the measurement of the force input sensorless. First, the laser excitation force is normalized by Newton's second law using a rigid block. Next, the laser excitation experiment with an object structure having a natural frequency within the high frequency region is conducted. Complex Fourier spectrum obtained by Fourier transforming the measured response is divided by the estimated laser excitation force. Finally, since the trigger position of the response and the time the impulse input is actually applied have errors, phase characteristics of the force-regulated complex Fourier transform is modified by taking the dead time included in the response into account, resulting in the FRF of the structure. The effectiveness of the proposed method is demonstrated by the vibration test with an aluminum block as object structure.
Content from these authors
© 2011 The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top