Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
A Myers theorem via m-Bakry-Émery curvature
Lin Feng Wang
Author information
JOURNAL FREE ACCESS

2014 Volume 37 Issue 1 Pages 187-195

Details
Abstract
In this paper, we prove that a complete manifold whose m-Bakry-Émery curvature satisfies
Ricf,m(x) ≥ −(m − 1) $\frac{K_0}{(1+r(x))^2}$
for some constant K0 < $-\frac{1}{4}$ should be compact. We also get an upper bound estimate for the diameter.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Department of Mathematics, Tokyo Institute of Technology
Previous article Next article
feedback
Top