Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Some remarks on a shape optimization problem
Francesco Della Pietra
Author information
JOURNAL FREE ACCESS

2014 Volume 37 Issue 3 Pages 608-619

Details
Abstract
Given a bounded open set Ω of Rn, n ≥ 2, and α ∈ R, let us consider
μ(Ω,α) = $\min_{\substack{v\in W_{0}^{1,2}(\Omega)\\v\not\equiv 0}} \frac{\ds\int_{\Omega} |\nabla v|^{2}dx+\alpha \left|\ds\int_{\Omega}|v|v\,dx \right|}{\ds\int_{\Omega} |v|^{2}dx}$.
We study some properties of μ(Ω,α) and of its minimizers, and, depending on α, we determine the sets Ωα among those of fixed measure such that μ(Ωα,α) is the smallest possible.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Department of Mathematics, Tokyo Institute of Technology
Previous article Next article
feedback
Top