Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Local solvability of a fully nonlinear parabolic equation
Goro Akagi
Author information
JOURNAL FREE ACCESS

2014 Volume 37 Issue 3 Pages 702-727

Details
Abstract
This paper is concerned with the existence of local (in time) positive solutions to the Cauchy-Neumann problem in a smooth bounded domain of RN for some fully nonlinear parabolic equation involving the positive part function rR $\mapsto$ (r)+: = r ∨ 0. To show the local solvability, the equation is reformulated as a mixed form of two different sorts of doubly nonlinear evolution equations in order to apply an energy method. Some approximated problems are also introduced and the global (in time) solvability is proved for them with an aid of convex analysis, an energy method and some properties peculiar to the nonlinearity of the equation. Moreover, two types of comparison principles are also established, and based on these, the local existence and the finite time blow-up of positive solutions to the original equation are concluded as the main results of this paper.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2014 Department of Mathematics, Tokyo Institute of Technology
Previous article Next article
feedback
Top