Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Injectivity criteria of linear combinations of harmonic quasiregular mappings
Jie HuangAntti RasilaJian-Feng Zhu
Author information
JOURNAL RESTRICTED ACCESS

2024 Volume 47 Issue 1 Pages 52-66

Details
Abstract

In this paper, we consider linear combinations of harmonic K-quasiregular mappings fj = hj + gi (j = 1, 2) of the class Har(k; φj), where k ∈ [0,1), ||ωfj|| = ||g'j/h'j||k < 1, k = (1 - K)/(1 + K), and φj = hj + egj is a univalent analytic function. We provide sufficient conditions for the linear combinations of mappings in these classes to be univalent and for the image domains to be linearly connected. Furthermore, we consider under which conditions the linear combination f is bi-Lipschitz.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Department of Mathematics, Tokyo Institute of Technology
Previous article Next article
feedback
Top