Kyushu Journal of Mathematics
Online ISSN : 1883-2032
Print ISSN : 1340-6116
ISSN-L : 1340-6116
A FUNCTION FIELD ANALOGUE OF THE RASMUSSEN-TAMAGAWA CONJECTURE: THE DRINFELD MODULE CASE
Yoshiaki OKUMURA
Author information
JOURNALS FREE ACCESS

2019 Volume 73 Issue 2 Pages 295-316

Details
Abstract

In the arithmetic of function fields, Drinfeld modules play the role that elliptic curves play in the arithmetic of number fields. The aim of this paper is to study a non-existence problem of Drinfeld modules with constraints on torsion points at places with large degree. This is motivated by a conjecture of Christopher Rasmussen and Akio Tamagawa on the non-existence of abelian varieties over number fields with some arithmetic constraints. We prove the non-existence of Drinfeld modules satisfying Rasmussen-Tamagawa type conditions in the case where the inseparable degree of the base field is not divisible by the rank of Drinfeld modules. Conversely if the rank divides the inseparable degree, then we prove the existence of a Drinfeld module satisfying Rasmussen-Tamagawa type conditions.

Information related to the author
© 2019 Faculty of Mathematics, Kyushu University
Previous article Next article
feedback
Top