Japanese journal of mathematics. New series
Online ISSN : 1861-3624
Print ISSN : 0289-2316
On the inverse of parabolic boundary value problems for large times
Thomas KRAINER
Author information
JOURNAL FREE ACCESS

2004 Volume 30 Issue 1 Pages 91-163

Details
Abstract
We construct algebras of Volterra pseudodifferential operators that contain, in particular, the inverses of the most natural classical systems of parabolic boundary value problems of general form.
Parabolicity is determined by the invertibility of the principal symbols, and as a result, is equivalent to the invertibility of the operators within the calculus. Existence, uniqueness, regularity, and asymptotics of solutions as t→∞ are consequences of the mapping properties of the operators in exponentially weighted Sobolev spaces and subspaces with asymptotics. An important aspect of this work is that the microlocal and global kernel structure of the inverse operator (solution operator) of a parabolic boundary value problem for large times is clarified. Moreover, our approach naturally yields qualitative perturbation results for the solvability theory of parabolic boundary value problems.
To achieve these results, we assign to t=∞ the meaning of a conical point and treat the operators as totally characteristic pseudodifferential boundary value problems.
Content from these authors
© The Mathematical Society of Japan
Previous article Next article
feedback
Top