Papers in Meteorology and Geophysics
Online ISSN : 1880-6643
Print ISSN : 0031-126X
ISSN-L : 0031-126X
Full Papers
Implication of POC/234Th Ratios in Oceanic Particulate Matter
An Approach to Particle Aggregation
Katumi Hirose
Author information
JOURNAL FREE ACCESS

2003 Volume 53 Issue 4 Pages 109-118

Details
Abstract

   234Th has been widely applied as a tracer of particulate organic carbon (POC) fluxes in the upper ocean. Fundamental to this approach is the determination of 234Th fluxes from water column measurements of the 234Th-238U disequilibria, and the conversion of 234Th flux to POC export, using the measured POC/234Th ratio on particles. As such, POC/234Th ratios are one of the most critical factors in quantifying the carbon export flux in ocean interior when using this approach. However, the POC/234Th ratios show significant temporal and spatial variations, but cannot be predicted at this time. Therefore, it is important to elucidate factors controlling the variations of the POC/234Th ratios. To achieve this purpose, we should understand the chemical interactions between POC and 234Th. In the open ocean, POC/234Th ratios have been determined together with other oceanographic parameters. We examined here the relationship between POC/234Th and primary production. The POC/234Th ratios were linearly related to logarithmic values of primary production. Taken into account the complexation between surface ligand on particulate organic matter (POM) and 234Th, a complexation model suggests that the size of particles adsorbing 234Th is related to primary production; in the equatorial Pacific, the size of particles adsorbing 234Th apparently decreases with increasing primary production, whereas opposite phenomenon occurs in the North Atlantic. Since the POC/234Th ratios were determined in filtered particulate matter, this finding suggests that aggregation of small particles would be dominant in the equatorial Pacific, which can be explained by a chemical aggregation model.

Content from these authors
© 2003 by Japan Meteorological Agency / Meteorological Research Institute
Next article
feedback
Top