Papers in Meteorology and Geophysics
Online ISSN : 1880-6643
Print ISSN : 0031-126X
ISSN-L : 0031-126X
An Investigation on the Variations of Sea Level due to Meteorological Disturbances on the Coast of the Japanese Islands (VII)
Storm Surges on the Coast of West Japan Facing the Pacific and the East China Sea
Ichiro Isozaki
Author information
JOURNAL FREE ACCESS

1970 Volume 21 Issue 4 Pages 421-448

Details
Abstract

Storm surges on the Pacifi c and the East China Sea coasts of West Japan are investigated by use of hourly readings of the tidal records for the ten years 1953 through 1962. Remarkable storm surges on these coasts are caused mainly by atmospheric pressure fall and the wind set-up associated with the passage of large typhoons.
On the coast of the Pacific Ocean the rise of sea level caused by the wind set-up is relatively small compared with that due to atmospheric pressure fall, because there are only narrow strips of shallow water between the coast and the deep ocean. The severest storm surge reaches about 100 cm height near the path of a large typhoon.
In storm surges along the coast of the East China Sea, the rise of sea level due to atmospheric pressure fall is most conspicuous, and the rise caused by the wind set-up is somewhat larger than on the coast of the Pacific Ocean.
In Kagoshima Bay, th e effect of wind set-up is small owing to the deepness of the bay, the maximum depth of which is more than 200 m. But occasionally remarkable storm surges occur in the bay, because the surge invading the bay from the outer ocean grows remarkably by the influence of the bay topography.
In Ariake Bay, especially at the head, the contributions of both wind and atmospheric pressure fall to the storm surge are great, and sometimes an abnormal elevation of sea level takes place associated with the storm surge. The contribution of the invading surge through the mouth is less in Ariake Bay than in Kagoshima Bay. But it must be remembered that Ariake Bay extends off Tachibana Bay and the surge invading Ariake Bay has already been amplified under the topographical influence of Tachibana Bay.

Content from these authors
© by Japan Meteorological Agency / Meteorological Research Institute
Previous article Next article
feedback
Top