Abstract
The purpose of this study was to clarify whether the short glass fibers of CaO-P2O5-SiO2-Al2O3 (CPSA) glass possessed the ability to reinforce conventional glass-ionomer cement (GIC). Biocompatibility of the set GIC mixed with short CPSA glass fibers was evaluated in a cell culture cytotoxicity test. Moreover, the rate of release fluoride ions from GIC mixed with short glass fibers was measured. The powder of a conventional GIC was mixed with short CPSA glass fibers (diameter, 9.7±2.1 μm; aspect ratio, 5.0±0.9) before mixing with the liquid of the GIC. Set cements of 40 mass% short CPSA glass fibers mixed with GIC powders showed maximum values of 18 MPa in diametral tensile strength (DTS) after aging for 24 hours due to the effects of specific shape of short glass fibers and reactivity between the mixing liquid and short glass fibers. The cytotoxicity of these cements to rat pulpal cells tested by cellular activity showed that the set GIC disks (13 mm in dia. × 1 mm in thickness) with 40 mass% short CPSA glass fibers had cell activity as that of the set GIC or a cell culture coverslip used as control. Moreover, the addition of short glass fibers to GIC did not disturb the release of fluoride from the specimens.