Nonlinear Theory and Its Applications, IEICE
Online ISSN : 2185-4106
ISSN-L : 2185-4106
Editorial Section
Overview of nonlinear signal processing in 5G and 6G access technologies
Eiji Okamoto
Author information
JOURNAL FREE ACCESS

2021 Volume 12 Issue 3 Pages 257-274

Details
Abstract

In recent years, there have been several advances in wireless communication systems, including the increase in transmission rate, and as a result, they are playing an increasingly significant role in our lives. To meet the widespread application scope, the commercialization of the fifth-generation mobile communications system (5G) has been initialized. This paper gives an overview of the 5G system and discusses the nonlinear signal processing technologies that support its performance improvement. Here, the term “nonlinear signal processing” is defined as an algorithm for transmitting and receiving data in communications that uses a nonlinear mechanism. Because there is a significant shortage of frequency bands in wireless communications, advanced technologies are being integrated to maximize frequency utilization. In addition, unlike in the 4G era, there are additional use cases that require performance guarantees for quality, delay, and the number of multiple connections in the 5G system, and the performance requirements for wireless systems are becoming more stringent. Nonlinear signal processing is key to improving the performance of these systems, and this paper outlines the nonlinear technology used in 5G wireless access. We will introduce multiple-input multiple-output transmission and non-orthogonal multiple access (NOMA), which will help improve the performance of wireless systems. In addition, we introduce a radio wave-encrypted NOMA with a physical layer security that is proposed by the authors. Furthermore, the technical trend of 6G is briefly introduced.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top