Abstract
Effect of Ca-doping on the ionic conductivity of LiSi2N3 was studied. The compositions of Li1-2xCaxSi2N3 (x=0-0.2) were synthesized by the reaction of Li3N, Si3N4, and Ca3N2 at temperature of 1873K-2073K. Ca was incorporated into the LiSi2N3 host lattice and formed the solid solution, Li1-2xCaxSi2N3. Activation energy for ionic conduction was decreased and ionic conductivity at room temperature was enhanced by Ca doping. At 298K, the ionic conductivity of densified Li1-2xCaxSi2N3 (x=0.075) ceramics achieved 1.6☓10-5Sm-1, almost 4 orders of magnitude higher than that of densified Li1-2xCaxSi2N3(x=0) ceramics (3.1☓10-9Sm-1).