Abstract
Adhesion between a flat silicon rubber and an aluminum body with sinusoidal surface roughness is investigated. Hysteresis loops are observed in the relation between the external pressure and the contact width. The hysteresis is considered as the effect of the surface sub-roughness, and is successfully interpreted by a theory of the elastic contact between an infinite elastic body and a rigid body with single sinusoidal surface roughness. The effect of the sub-roughness is approximately expressed using a treatment of the energy dissipation. The work of adhesion and the parameter corresponding to the energy dissipation ratio are obtained from the measurements. The pressure required to snap to perfect contact and to separate the contact can be well predicted using the work of adhesion and these parameters.