Journal of The Remote Sensing Society of Japan
Online ISSN : 1883-1184
Print ISSN : 0289-7911
ISSN-L : 0289-7911
Special Issue for AMSR
AMSR-E Geolocation and Validation of Sea Ice Concentrations Based on 89GHz Data
Georg HEYGSTERHeidrun WIEBEGunnar SPREENLars KALESCHKE
Author information
JOURNAL FREE ACCESS

2009 Volume 29 Issue 1 Pages 226-235

Details
Abstract
Sea ice concentrations based on AMSR-E 89GHz data are unprecedented in combining data timeliness (about 6 hours after overflight), horizontal resolution (about 5km) and daily global coverage. Here the geoloclation of the AMSR-E Level 1 data (required to use due to the time constraints) is corrected and the sea ice concentrations are validated. The geolocation adjusts the cone angle and scan angle of AMSR-E's conical scanning scheme based on the comparisons of the jump of the AMSR-E brightness temperature at the global coastlines with a global landmask. The average residual error increasing from 250m for the 89GHz channels to 1425m in the 6GHz channels. The ice concentrations are based on the ARTIST (Arctic Radiation and Turbulence Interaction STudy) Sea Ice (ASI) retrieval algorithm which is an enhancement of the Svendsen 85GHz algorithm. Here we review the results of four types of comparisons of the ASI/AMSR-E ice concentrations, namely with (1) Arctic ship based bridge observations of RV Polarstern, (2) optical images of the multispectral imager ETM+ operating on Landsat-7, (3) Envisat and Radarsat-1 SAR images and (4) two other AMSR-E sea ice concentration algorithms (Bootstrap and NASA Team 2) which use the 19/37GHz channels. In spite of the different sensor types, wavelengths and interaction principles of the electromagnetic radiation the four comparisons yield a rather consistent picture. On average the ASI ice concentrations range between those from Landsat and SAR. Both the bias intervals (-2.9...2.6%) and the rms errors are slightly higher than those of the NT2 algorithm, applied to the same scenes. In the hemispherical (Arctic and Antarctic) comparisons of the ASI results with the widely used NASA Team 2 and Bootstrap concentrations, the biases do not exceed 2%, the rms error ranges between 7 and 11% ice concentration.
Content from these authors
© 2009 The Remote Sensing Society of Japan
Previous article Next article
feedback
Top