Journal of The Remote Sensing Society of Japan
Online ISSN : 1883-1184
Print ISSN : 0289-7911
ISSN-L : 0289-7911
Paper
Development of Validation Method for EarthCARE ATLID Using Ground-Based Lidar and Radiometer Networks
Nobuo SUGIMOTOTomoaki NISHIZAWAIchiro MATSUIAtsushi SHIMIZUAkiko HIGURASHI
Author information
JOURNAL FREE ACCESS

2014 Volume 34 Issue 4 Pages 286-292

Details
Abstract
We studied validation methods for the space lidar ATLID onboard the EarthCARE satellite planned for launch in 2016. ATLID will be the first high-spectral-resolution lidar (HSRL) in space able to provide the extinction coefficient, backscattering coefficient and depolarization ratio at 355 nm without the assumption of the lidar ratio. First priority in the validation experiment will be the direct comparison of these parameters with the ground-based 355-nm Raman and HSR lidars. A unique data product from JAXA is the aerosol component retrieval using ATLID or the synergy of ATLID and Multi-Spectral Imager (MSI). Ground-based multi-wavelength Raman-scattering lidars and multi-wavelength HSRLs with the extended aerosol component retrieval method and the method used synergistically with sun-photometers and sky-radiometers are useful for validating aerosol component products. An important focus of the validation is confirming the validity of the optical models for aerosol components used in the retrievals. Comparing of the retrievals using the different parameter sets obtained with ground-based multi-parameter lidars and radiometers will be useful for testing the validity of the optical models. The aerosol component analysis approach will be useful for establishing continuity of data from the different space lidars. In addition, the reliable aerosol optical models will be also useful in calculating optical properties with chemical transport models, and in data assimilation. Development of multi-wavelength Raman-scattering lidars in the Asian dust and aerosol lidar observation network (AD-Net) are reported, along with development of HSRLs in the lidar network in South America in a JICA-JST SATREPS project.
Content from these authors
© 2014 The Remote Sensing Society of Japan
Previous article Next article
feedback
Top