Journal of The Remote Sensing Society of Japan
Online ISSN : 1883-1184
Print ISSN : 0289-7911
ISSN-L : 0289-7911
Paper
Volcanic Ash Detection Using ALOS-2 PALSAR-2 Multi-temporal Interferometric Coherence Including ScanSAR Mode Data
Ryo NATSUAKIManabu WATANABEMasato OHKITakeshi MOTOHKAShinichi SUZUKIMasanobu SHIMADA
Author information
JOURNAL FREE ACCESS

2017 Volume 37 Issue 1 Pages 1-12

Details
Abstract

In this paper, we evaluate the potential accuracy for the volcanic ash coverage using interferometric coherence of the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) aboard the Advanced Land Observing Satellite-2 (ALOS-2, “DAICHI-2”). In order to detect the disaster affected area from interferometric coherence, we require pre-disaster and co-disaster pairs. That is, we require at least two interferometric archives taken before the disaster in addition to one archive after the disaster. The ideal multi-temporal analysis is performed with of course, highest resolution pairs. However, we do not always have enough number of the archive especially in the early stage of the satellite mission. Here, we use not only Stripmap but also ScanSAR mode archive in order to achieve enough number of pairs. The combination of the Stripmap and ScanSAR archives will help to increase the interferometric pair while it suffers the spatial resolution and coherency. Especially for ALOS-2 PALSAR-2 data, it has not been evaluated the potential accuracy of such Stripmap-ScanSAR interferometry method. In this paper, we use the volcanic eruption event in May 2015 at Kuchinoerabu-jima Island, Kagoshima prefecture, Japan for the case study. We evaluated the proposed method with the truth data which was achieved by manual classification using aerial photography. Experimental results showed that the proposed method marked approximately 91% overall accuracy with 0.64 Kappa coefficients to detect the dense volcanic ash coverage.

Content from these authors
© 2017 The Remote Sensing Society of Japan
Previous article Next article
feedback
Top