SOILS AND FOUNDATIONS
Online ISSN : 1881-1418
Print ISSN : 0038-0806
TECHNICAL PAPERS
EXTERNAL STABILITY OF GROUP COLUMN TYPE DEEP MIXING IMPROVED GROUND UNDER EMBANKMENT LOADING
MASAKI KITAZUMEKENJI MARUYAMA
Author information
JOURNAL FREE ACCESS

2006 Volume 46 Issue 3 Pages 323-340

Details
Abstract
The Deep Mixing Method (DMM), a deep in-situ soil stabilization technique using cement and/or lime as a binder has been often applied to improve soft soils. Group column type improvement has been extensively applied to foundations of embankment or lightweight structures. A design procedure for the group column type DM ground has been established in Japan mainly for application of embankment, in which two failure patterns are assumed: sliding failure in the external stability and rupture breaking failure in the internal stability. The internal stability of the improved ground has been investigated experimentally, and it was found that the DM columns show various failure modes: shear, bending and tensile failure, depending not only on the ground and loading conditions but also on the location of each column. However, the current design does not incorporate the effects of these failure modes, but only that of shear failure mode. For the external stability, it is known that a collapse failure pattern, in which the DM columns tilt like dominos, could take place instead of sliding failure. The current design method, which does not take into account this failure pattern, might overestimate the external stability. In this study, a series of centrifuge model tests and elasto-plastic FEM analyses were performed to investigate the external stability of group column type DM improved ground under embankment loading. The centrifuge model study has revealed that the improved ground does not fail with a sliding failure pattern but with a collapse failure pattern in the model test condition. The FEM analyses confirmed the model test results and showed that the improved ground could fail with sliding failure in a certain type of ground conditions such as a floating type improved ground. A simple calculation incorporating the collapse failure pattern gave reasonable estimation of the embankment pressure at ground failure. This paper demonstrates the importance of simulating appropriate failure pattern for evaluating the external stability accurately.
Content from these authors
© 2006 The Japanese Geotechnical Society
Previous article Next article
feedback
Top