SOILS AND FOUNDATIONS
Online ISSN : 1881-1418
Print ISSN : 0038-0806
TECHNICAL PAPERS
BEHAVIOUR OF PILE GROUP BEHIND A SHEET PILE QUAY WALL SUBJECTED TO LIQUEFACTION-INDUCED LARGE GROUND DEFORMATION OBSERVED IN SHAKING TEST IN E-DEFENSE PROJECT
RAMIN MOTAMEDIKUO TOWHATATSUYOSHI HONDASUSUMU YASUDAKENTARO TABATAHIROSHI NAKAZAWA
Author information
JOURNAL FREE ACCESS

2009 Volume 49 Issue 3 Pages 459-475

Details
Abstract
This paper aims to illustrate a large-scale test on a pile group and a sheet pile quay wall which were subjected to liquefaction-induced large ground deformation. The sheet pile quay wall was displaced laterally and the 2×3 pile group was forced by the flow of liquefied soil. This experiment was conducted in March 2006 at the National Research Institute for Earth Science and Disaster Prevention (NIED), Hyogo Earthquake Engineering Research Center, Japan. Liquefaction-induced lateral spreading was achieved, and soil moved laterally about 1.1 m behind the sheet pile quay wall. Lateral soil displacement was measured by the inclinometers, and results were in close agreement with the directly observed values. Soil lateral displacement and velocity of soil flow decreased as the distance from the quay wall increased toward the landside. Bending strain records were able to explain the damages to the piles, yielding at the top and buckling at the middle height. Lateral force of the liquefied soil exerted on the piles was obtained using earth pressure (EP) sensors and it is shown that rear row piles (close to the quay wall) received larger lateral forces than front row piles (far from the quay wall). This behaviour is explained by the distribution of displacement and velocity of the liquefied soil throughout the shaking. In addition, the lateral soil force was back calculated from strain gauge data and the results are compared with the ones directly measured by the EP sensors. Then, the limitations and advantages of the back-calculation approach are elaborated in this study. Moreover, the time history of lateral soil force showed no correlation with either soil or pile displacements, while it demonstrated a fairly close correlation with the relative velocity until a specific time. This interesting finding would confirm the rate-dependent behaviour of the liquefied soil, though more data from large scale experiments, field testing and centrifuge model tests are needed in this regard.
Content from these authors
© 2009 The Japanese Geotechnical Society
Previous article Next article
feedback
Top