BUTSURI-TANSA(Geophysical Exploration)
Online ISSN : 1881-4824
Print ISSN : 0912-7984
ISSN-L : 0912-7984
Case Study
Preliminary application of the CSMT method for monitoring of an experiment site of CO2 geological storage by the Taiwan Power Research Institute
Koichi SuzukiKenji KubotaHideshi KaiedaChung-Hui ChiaoMing-Wei YangAkira Johmori
Author information
JOURNAL FREE ACCESS

2017 Volume 70 Pages 12-24

Details
Abstract

The Taiwan Power Research Institute plans to perform a field experiment on sedimentary rocks at 2500 m depth at a CO2 geological storage site near a coastal area in Taichung-city. Application of electromagnetic methods is being planned to monitor changes in resistivity caused by injected CO2. It is necessary to measure the initial resistivity of the layers, before large-scale CO2 injection tests. For the CSMT (Controlled Source Magneto-Telluric) method, the exploration depth has been previously limited to less than 1000 m at most sites in Japan, because the distance between an electric current source and a survey site cannot be separated enough because of the influence of artificial noise. In this study, we conducted simulations using numerical models in order to evaluate the effectiveness to monitor the CO2 reservoir at a depth of 2500 m. As a result, the total amount of injected CO2 reached 100 Mton, apparent resistivity increased 5%. We conducted a field test at the site using the great depth CSMT method. We set the current source at a distance of 15 km away from the site and we measured apparent resistivity and phase data at the frequencies of 8192 - 0.015625 Hz using a new electromagnetic exploration instrument with high spectrum resolution controlled by GPS synchronization (Johmori et al., 2010). We could obtain good data by processing with a digital filter and average E/H vector for adjacent survey stations, regardless of the noises at the site. We could also measure the data at the low frequency of 0.0625 Hz by performing a near-field correction considering the signal source. Furthermore, the resistivity profiles obtained by the 1D and 2D inversion techniques matched well with the resistivity of boring core samples and electrical logging data from 2000 to 3000 m depth at the site. In conclusion, we confirmed the effectiveness of this technique.

Content from these authors
© 2017 The Society of Exploration Geophysicists of Japan
Previous article Next article
feedback
Top