Journal of The Surface Finishing Society of Japan
Online ISSN : 1884-3409
Print ISSN : 0915-1869
ISSN-L : 0915-1869
Research Papers
Control of Spatially Localized Chemical Reactions Using a Scanning Probe Microscope
Nagahiro SAITOTakahiro ISHIZAKISunHyung LEEOsamu TAKAI
Author information
JOURNAL FREE ACCESS

2005 Volume 56 Issue 12 Pages 930

Details
Abstract
Control of spatially localized chemical reactions such as site-selective reversible chemical conversion of functional groups and metal deposition on nano and/or micro areas is important to fabricate new devices in the next generation. In this study, the reaction controls were attempted with a nano probe. In the reversible chemical conversion, amino-terminated self-assembled monolayers (SAMs), which were prepared on Si substrates from (p-aminophenyl)trimethoxysilane (APhS) through chemical vapor deposition, were electrochemically converted into nitoroso-terminate ones using an atomic force microscope. The electrochemical reaction required the positive bias voltages of +0.5 to +3V. In order to define the chemical conversion, the sample substrates were immersed in a solution of pH=4 containing carboxylate-modified polystyrene (PS) spheres. The PS spheres were site-selectively adsorbed on the non-scanned regions. This indicates that non-scanned regions justifiably correspond to amino-terminated SAMs. On the other hand, the PS spheres were not adsorbed on the scanned regions at all, since the regions were oxidized and converted into nitoroso-terminated SAMs. Furthermore, the oxidized regions could also be reduced by a probe with negative bias voltage of −2V. The site-selective electroless deposition was actualized using a surface-induced reduction of gold ions combined with scanning probe lithography. Gold nano- or micro-structures on hydrogen-terminated Si surfaces were demonstrated. After fabrication of an Au nanostructure, 1-hexadecanethiol was immobilized on the Au surface. The result shows that we successfully controlled chemical reactions in nanometer-scale by the formation of metal patterns with the SPM.
Content from these authors
© 2005 by The Surface Finishing Society of Japan
Previous article Next article
feedback
Top