Abstract
In order to diagnose and predict the contaminant transport process in large scale geosystems using a nonlinear filtering strategy the state space model has been derived from simulating horizontal contaminant dispersion by extending the discrete vortex method. The dispersion area S and the dispersion rate S have been taken into account for evolving the state space model of the horizontal contaminant transport process. Eventually, S/S has been found to be represented by a function composed of exponential decay terms, which is transformed to the autonomous state equation and serves as the state space model accompanied with the observation equation. The state equation is extended to involve a noise process corresponding to disturbances such as viscous diffusion and inhomogeneity of the vortex strength as observed in real systems. The parameters involved in the state equation are adaptively estimated from the current state observations using a non-linear filtering algorithm. The state space model has been verified by a series of numerical demonstrations carried out using the discrete vortex method.