Abstract
To investigate the variability of the structure and evolution of meso-α-scale precipitation systems generated in the Baiu frontal zone, numerical experiments using a cloud-resolving non-hydrostatic model were performed with idealized Baiu-front-like environments. The environment was constructed based on hydrostatic and geostrophic balances, and temperature and relative humidity were designed by using Gaussian functions to realize the frontal structure and moist conveyor belt in the lower atmosphere. In order to generate meso-α-scale precipitation systems, temperature perturbation associated with a shallow depression was introduced. Long-lived band-shaped meso-α-scale precipitation systems with the internal multiscale structures as are often observed in the Baiu frontal zone were simulated under the given simplified environments. The variability of features of the meso-α-scale precipitation systems with respect to relative humidity in the middle troposphere in the Baiu frontal zone was examined as an example. The moister environment produced the more rainfall. Additionally, rainfall was intensified under a specific humidity condition.