Abstract
Infrared observations from the Multi-functional Transport Satellite (MTSAT)-1R and latent heating profiles from the Tropical Rainfall Measuring Mission (TRMM) satellite are statistically analyzed to delineate the temporal variation of heating profiles associated with isolated cold cloud systems in the life cycle stages from the intermediate between initiation and mature to dissipating over tropical oceans. Clear temporal variations are confirmed for convective heating profiles, while those of the stratiform heating profiles are negligible. The resulting total profiles show that heating occurs at all levels throughout the lifetime of cold cloud systems, and the peak shifts from 5 to 8 km with elapsed time. Because that the area of stratiform rainfall in a system and its temporal variation are large, the total heating contribution released by a cold cloud system to the surrounding atmosphere during these life cycle stages is dominated by changes in the rainfall area and the ratio of the stratiform rainfall, rather than by changes in the shape of convective heating profiles.