Journal of the Japan Society for Technology of Plasticity
Online ISSN : 1882-0166
Print ISSN : 0038-1586
ISSN-L : 0038-1586
Papers
Effect of Bottoming on Reduction of Springback
in U-bending of High-Strength Steel Sheet
Takayuki OGAWAFusahito YOSHIDA
Author information
JOURNAL FREE ACCESS

2012 Volume 53 Issue 612 Pages 69-73

Details
Abstract
The effect of bottoming load on the reduction of springback was investigated by performing U-bending experiments on a 590MPa level high-strength steel sheet for three different forming gaps (i.e., the gaps between the punch and die, which were 0, 5 and 10% less than the sheet thickness) at the punch corner. From the experiment, it was found that springback decreases with increasing bottoming load to some extent but a certain amount of springback remains even under a higher load. In the 3D Finite Element (FE) simulation of the U-bending/bottoming, it was clarified that bending stresses at a punch R-corner are markedly reduced by bottoming; however, those in the vicinity of the end of the corner cannot be eliminated. This is why it is so difficult to completely eliminate the springback by bottoming in U-bending. Thus, it is recommended in real press forming operations to apply a certain amount of bottoming load to reduce springback, but it should be very large. One of the important conclusions for an accurate FE simulation of springback is that the proper choice of a material model is essential, and furthermore, consideration of the elastic deformation of tools will give better results. The best combination, found in the present study, is the use of the Yoshida-Uemori kinematic hardening law for the material model and 3D deformable solid model for tools.
Content from these authors
© 2012 The Japan Society for Technology of Plasticity
Previous article Next article
feedback
Top