Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications
Online ISSN : 2188-4749
Print ISSN : 2188-4730
The 43rd ISCIE International Symposium on Stochastic Systems Theory and Its Applications (Oct. 2011, Shiga)
A New Multi-layered GMDH-type Neural Network Algorithm Using Principal Component-Regression Analysis
Tadashi KondoJunji UenoShoichiro Takao
Author information
JOURNAL FREE ACCESS

2012 Volume 2012 Pages 83-88

Details
Abstract
In this study, a revised Group Method of Data Handling (GMDH)-type neural network using principal component-regression analysis is proposed and applied to the nonlinear system identification. GMDH-type neural networks can automatically organize neural network architecture by heuristic self-organization method and structural parameters such as the number of layers, the number of neurons in hidden layers and useful input variables are automatically selected so as to minimize the prediction error criterion defined as Akaike's information criterion (AIC) or Prediction sum of squared (PSS). But, in the heuristic self-organization method, the multicolinearity generates and the network architecture becomes unstable. In this study, the principal component-regression analysis is used for estimating the parameters of the neurons and stable and accurate multi-layered architectures of the GMDH-type neural networks are organized using the heuristic self-organization.
Content from these authors
© 2012 ISCIE Symposium on Stochastic Systems Theory and Its Applications
Previous article Next article
feedback
Top